US 2006/0123412 Al

it is embodied by the contents and configuration of the
storage device 120. A persisted offline (i.e., non-executing)
copy of the system may be called, herein, a “system image.”

[0037] FIG. 1 shows, for example, three artifacts (130,
140, and 150) stored on the storage device 120. Herein,
“software artifacts” or simply “artifacts” are collections of
individual software items stored on the computer-storage
device. 120. Portions of these items may be stored in various
system stores including file systems, databases, configura-
tion registries, etc. Those artifacts represent the system-
embodying content and configuration. A computer’s storage
device may have a multitude of artifacts. A system image of
a computer contains a multitude of artifacts.

[0038] Unlike a conventional software-based computer,
the artifacts of the computer 102 are not merely an accu-
mulation of bits resulting from series of ad hoc events during
the lifetime of the computer. Rather, each of the artifacts of
the computer 102 are associated with at least one manifest.
For example, systems artifact 130 has its associated manifest
132 stored therewith the artifact or at some derivable or
known-location on the storage device 120. Artifacts 140 and
150 have their associated manifests, 142 and 152 respec-
tively.

[0039] These artifacts are called “self-describing artifacts”
because each of the artifacts (via its associated manifest of
metadata) describes itself. Rather than being procedural
(e.g., a list of actions to be performed), the self-describing
metadata descriptions are a declarative description of the
desired state of the artifact.

[0040] Each description is a complete prescriptive record
of the state necessary for the artifact to be consistent and
correct. By analogy while a set of directions is procedural,
a precise address is declarative and more powerful in the
sense that it allows new computation; for example, one can
use the address to determine a new set of directions for a
different starting point. The declarative description includes
a record of all of the artifact’s interdependencies and inter-
relationships with other components of the system.

[0041] These metadata descriptions effectively bridge
low-level and high-level software abstractions. Low-level
software abstractions include, for example, particular arti-
facts (e.g., load modules) on a storage device and particular
processes executing on the computer. High-level software
abstractions include, for example, running applications pro-
grams and families of applications. High-level software
abstractions may also include the running operating system
(such as OS 112) and its elements.

[0042] As depicted in FIG. 1, the computer 102 has, in the
memory 110, three oversight and managerial functional
components that utilize the self-components include a self-
describing artifact manager 160, an execution gatekeeper
162, and a systems verifier 164.

[0043] While each of these functional components are
shown separately in FIG. 1, their functionality may be
combined into fewer components or expanded to additional
components. Furthermore, these functional components may
be part of the computer’s OS 112 or they may be part of a
non-OS component of the computer 102.

[0044] The self-describing artifact manager 160 manages
the self-describing artifacts on the storage device 120. As

Jun. &, 2006

part of that management, the manager may facilitate persis-
tence and structuring of artifacts. The manager may ensure
the maintenance of the association between each artifact and
its manifest. The manager may ensure the consistency of an
artifact to the description in its manifest. Furthermore, the
manager may update self-describing artifacts in response to
changes in configuration of the system.

[0045] The self-describing artifact manager 160 may
assist in the optimization on the loading of artifacts from the
storage device 120. The self-describing artifact manager
may take a larger view of the overall operation of the
applications and the OS of the computer. Based on this view,
the self-describing artifact manager 160 may determine
which artifacts (e.g., load modules) will be combined in
processes for a particular application. The manager may then
combine artifacts into a smaller, and presumably optimized,
number of artifacts. Similarly, using the system manifest
(which contains declarative descriptions of the entire sys-
tem) to determine which applications will be invoked soon,
the self-describing artifact manager can encourage the start
of some applications before they are actually invoked.

[0046] The execution gateway 162 clears an application
(and possibly other executable components) for invocation.
When invocation of an application is pending, the execution
gatekeeper 162 examines its associated self-describing arti-
facts. The declarative descriptions in the self-describing
artifacts may specify explicit static or dynamic conditions
that are required for the associated application. An example
of typical explicit conditions is a list of necessary compo-
nents, which must exist on the system for the successful
execution of the application. Another example of typical
explicit conditions is a list of applications and system
components that must have been launched (or are in a
specified current state) before an application itself is allowed
to launch.

[0047] The gatekeeper examines the current conditions
and if they meet the requirements specified in the declarative
descriptions of the associated artifacts, then the gatekeeper
allows invocation of the application. Otherwise, then the
gatekeeper does not allow invocation of the application.

[0048] With the governance of the execution gatekeeper
162, no code will execute on the computer 102 unless the
code is described in an associated manifest. In one embodi-
ment, only code described in associated manifests and
signed by trusted software publishers may be installed or run
on the computer 102.

[0049] In addition, the execution gatekeeper 162 may
perform audits on the integrity of the system as a check
against external modification (e.g., by way of innocent data
corruption or malicious attacks). The audit is based upon the
manifests of the self-describing artifacts of the system.

[0050] The system verifier 164 performs one or more
verifications on the self-describing artifacts. It may perform
this in response to a manual request to do so, in response to
an action (e.g., installation of new software), in reponse to
new information becoming available, and/or as scheduled to
do so. Furthermore, verifications made by the system verifier
164 are based, at least in part, upon information gathered
from an examination of the manifests of the self-describing
artifacts.



